Mixing Properties for Random Walk in Random Scenery
نویسندگان
چکیده
منابع مشابه
Moderate Deviations for Random Walk in Random Scenery
We investigate the cumulative scenery process associated with random walks in independent, identically distributed random sceneries under the assumption that the scenery variables satisfy Cramér’s condition. We prove moderate deviation principles in dimensions d ≥ 2, covering all those regimes where rate and speed do not depend on the actual distribution of the scenery. In the case d ≥ 4 we eve...
متن کاملAnnealed Deviations of Random Walk in Random Scenery
Let (Zn)n∈N be a d-dimensional random walk in random scenery, i.e., Zn = ∑n−1 k=0 Y (Sk) with (Sk)k∈N0 a random walk in Z d and (Y (z))z∈Zd an i.i.d. scenery, independent of the walk. The walker’s steps have mean zero and some finite exponential moments. We identify the speed and the rate of the logarithmic decay of P( 1 nZn > bn) for various choices of sequences (bn)n in [1,∞). Depending on (b...
متن کاملFrom charged polymers to random walk in random scenery
We prove that two seemingly-different models of random walk in random environment are generically quite close to one another. One model comes from statistical physics, and describes the behavior of a randomlycharged random polymer. The other model comes from probability theory, and was originally designed to describe a large family of asymptotically self-similar processes that have stationary i...
متن کاملA crossover for the bad configurations of random walk in random scenery
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...
متن کاملDeviations of a Random Walk in a Random Scenery with Stretched Exponential Tails
Let (Zn)n∈N0 be a d-dimensional random walk in random scenery, i.e., Zn = ∑n−1 k=0 YSk with (Sk)k∈N0 a random walk in Z d and (Yz)z∈Zd an i.i.d. scenery, independent of the walk. We assume that the random variables Yz have a stretched exponential tail. In particular, they do not possess exponential moments. We identify the speed and the rate of the logarithmic decay of P( 1 nZn > tn) for all se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1988
ISSN: 0091-1798
DOI: 10.1214/aop/1176991597